
pypersist Documentation
Release 1.1

Michael Torpey

Aug 28, 2020

Contents:

1 Installation 3

2 Examples 5

3 Citing 7

4 Acknowledgements 9
4.1 The persist decorator . 9
4.2 Caching to a local disk . 11
4.3 Caching to a MongoDB database . 12
4.4 Internal defaults . 13

5 Indices and tables 17

Python Module Index 19

Index 21

i

ii

pypersist Documentation, Release 1.1

pypersist is a persistent memoisation framework for Python 3. Persistent memoisation is the practice of storing the
output of a function permanently to a disk or a server so that the result can be looked up automatically in the future,
avoiding any known results being recomputed unnecessarily.

Contents: 1

https://travis-ci.org/mtorpey/pypersist
https://codecov.io/gh/mtorpey/pypersist
https://pypersist.readthedocs.io/en/latest/?badge=latest
https://badge.fury.io/py/pypersist
https://mybinder.org/v2/gh/mtorpey/pypersist/master?filepath=binder/demo.ipynb

pypersist Documentation, Release 1.1

2 Contents:

CHAPTER 1

Installation

pypersist is available from PyPI, and the latest release can be installed using, for example:

pip3 install --user pypersist

Alternatively, the latest development version can be installed using Github:

git clone https://github.com/mtorpey/pypersist.git
pip3 install --user ./pypersist

3

pypersist Documentation, Release 1.1

4 Chapter 1. Installation

CHAPTER 2

Examples

To use, import the persist class from the pypersist package:

from pypersist import persist

and use it as a decorator when writing a function:

@persist
def double(x):

return x * 2

print(double(3))
print(double(6.5))

This will store the outputs of the double function in a directory called persist/double/, in a machine-readable
format.

One can specify various arguments to persist. For example:

@persist(key=lambda x,y: (x,y),
hash=lambda k: '%s_to_the_power_of_%s' % k,
pickle=str,
unpickle=int)

def power(x, y):
return x ** y

print(power(2,4))
print(power(10,5))

will store the outputs of power in human-readable files with descriptive filenames.

Many more options are available. See the persist class documentation for a full description, or launch the included
notebook on Binder for more examples.

See this HackMD and the Issue tracker for current plans.

5

https://mybinder.org/v2/gh/mtorpey/pypersist/master?filepath=binder/demo.ipynb
https://mybinder.org/v2/gh/mtorpey/pypersist/master?filepath=binder/demo.ipynb
https://hackmd.io/1M5clex-TYWCuxxgi05k5A

pypersist Documentation, Release 1.1

6 Chapter 2. Examples

CHAPTER 3

Citing

Please cite this package as:

[Tor20] M. Torpey, pypersist, Python memoisation framework, Version X.Y (20XX), https://github.com/mtorpey/
pypersist.

7

https://github.com/mtorpey/pypersist
https://github.com/mtorpey/pypersist

pypersist Documentation, Release 1.1

8 Chapter 3. Citing

CHAPTER 4

Acknowledgements

pypersist was created as part of the OpenDreamKit project: https://opendreamkit.org/

This part of the project is summarised in this report.

4.1 The persist decorator

The most important feature of pypersist is the persist decorator. As shown in the Examples section, you can use it
by simply writing @persist above any function you wish to memoise.

persist can be used without any arguments, and its functionality will use use sane, conservative defaults. However,
it can be customised in various ways using optional arguments, as follows.

pypersist.persist(func=None, cache=’file://persist/’, funcname=None, key=None, storekey=False,
pickle=<function pickle>, unpickle=<function unpickle>, hash=<function hash>,
unhash=None, metadata=None, verbosity=1)

Function decorator for persistent memoisation

Store the output of a function permanently, and use previously stored results instead of recomputing them.

To use this, decorate the desired function with @persist. Or to customise the way this memoisation is done,
decorate with @persist(<args>) and specify custom parameters.

You can even use this decorator for methods in a class. However, since it may be difficult to pickle a class
instance, you may wish to specify a custom key function.

Parameters

• cache (str, optional) – The address of the cache in which the outputs of this func-
tion should be stored. If it starts with “file://”, then the remainder of the string should be a
path to the directory on the local file system in which the results will be stored; this may be
a relative path, and the directory will be created if it does not exist. If it starts with “mon-
godb://” then the remainder of the string should be the URL of the pypersist MongoDB
server in which the results will be stored. If it does not contain “://” then “file://” will be
added at the beginning. Default is “file://persist”.

9

https://opendreamkit.org/
https://github.com/OpenDreamKit/OpenDreamKit/blob/master/WP6/D6.9/report-final.pdf
https://docs.python.org/3/library/stdtypes.html#str
file://

pypersist Documentation, Release 1.1

• funcname (str, optional) – A string that uniquely describes this function. If the
same cache is used for several memoised functions, they should all have different funcname
values. Default is the name of the function.

• key (function(args -> object), optional) – Function that takes the argu-
ments given to the memoised function, and returns a key that uniquely identifies those ar-
guments. Two sets of arguments should have the same key only if they produce the same
output when passed into the memoised function. Default returns a sorted tuple describing
the arguments along with their names.

• storekey (bool, optional) – Whether to store the key along with the output when
a result is stored. If True, the key will be checked when recalling a previously computed
value, to check for hash collisions. If False, two keys will produce the same output whenever
their hash values are the same. Default is False.

• pickle (function(object -> str), optional) – Function that converts the
output of the function to a string for storage. Should be the inverse of unpickle. If storekey
is true, this will also be used to store the key, and should do so without newline characters.
Default uses the pickle module and base 64 encoding.

• unpickle (function(str -> object), optional) – Function that converts a
string back to an object when retrieving a computed value from storage. Should be the
inverse of pickle. If storekey is true, this will also be used to retrieve the key. Default uses
the pickle module and base 64 encoding.

• hash (function(object -> str), optional) – Function that takes a key and
produces a string that will be used to identify that key. If this function is not injective, then
storekey can be set to True to check for hash collisions. The string should only contain
characters safe for filenames. Default uses SHA-256 and base 64 encoding, which has an
extremely small chance of collision.

• unhash (function(str -> object), optional) – Function that, if specified,
should be the inverse of hash. If this is specified, it may be used whenever the keys of cache
are requested. Default is None.

• metadata (function(-> str), optional) – Function that takes no arguments
and returns a string containing metadata to be stored with the result currently being written.
This might include the current time, or some data identifying the user or system that ran the
computation.

• verbosity (int, optional) – What level of verbosity to output when running. If 0,
nothing will be printed. If 1, prints only when something goes wrong. If 2, also prints when
writing to files or clearing the cache. If 3, also prints when reading from the cache. If 4, it
includes all the above with more details. Defaults to 1.

Variables cache (diskcache.Cache or mongodb.Cache) – Dictionary-like object that
allows keys to be looked up and, if present, gives the previously computed value. Values can be
added and removed using the syntax func.cache[key] = val and del func.cache[key]. If storekey
is True or unhash is specified, this implements the collections.abc.MutableMapping abstract
base class and we can iterate over its keys using for key in func.cache.

Examples

Simple persistence using default settings:

>>> @persist
... def double(x):

(continues on next page)

10 Chapter 4. Acknowledgements

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

pypersist Documentation, Release 1.1

(continued from previous page)

... return 2 * x
>>> double(3)
6
>>> double(3)
6
>>> double.cache[(("x", 3),)]
6

Custom persistence using a simpler key, a descriptive filename, and writing human-readable files:

>>> @persist(key=lambda x,y: (x,y),
... hash=lambda k: "%s_to_the_power_of_%s" % k,
... pickle=str,
... unpickle=int)
... def power(x, y):
... return x ** y
>>> power(2,4)
16
>>> power(10,3)
1000
>>> power.cache[(2, 4)]
16

Persistence of a method inside a class. We specify a key function that characterises the relevant parts of the A
object, since it can be difficult to pickle class instances:

>>> class A:
... def __init__(self, x):
... self.x = x
... @persist(key=lambda self, a: (self.x, a))
... def this_plus_number(self, a):
... return self.x + a
>>> a = A(5)
>>> a.this_plus_number(10)
15
>>> a.this_plus_number.cache[(5, 10)]
15
>>> A.this_plus_number.cache[(5, 10)]
15

The default arguments used by persist rely on code in the following modules:

Argument Module
cache pypersist.diskcache
key pypersist.preprocessing
pickle, unpickle pypersist.pickling
hash pypersist.hashing

4.2 Caching to a local disk

Persistent memoisation backend that saves results in the local file system

The persist decorator takes a cache argument, which details what sort of backend to use for the cache. If this string
begins with “file://”, or if no cache is specified, then a disk cache is used, which saves computed results to a directory

4.2. Caching to a local disk 11

file://

pypersist Documentation, Release 1.1

in the local file system. This internal work is done by the classes defined below.

class pypersist.diskcache.Cache(func, dir)
Dictionary-like object for saving function outputs to disk

This cache, which can be used by the persist decorator in persist.py, stores computed values on disk in a specified
directory so that they can be restored later using a key. Like a dictionary, a key-value pair can be added using
cache[key] = val, looked up using cache[key], and removed using del cache[key]. The number of values stored
can be found using len(cache).

A disk cache might not store its keys, and therefore we cannot iterate through its keys as we can with a dictionary.
However, see CacheWithKeys.

Parameters

• func (persist_wrapper) – Memoised function whose results this is caching. Options
which are not specific to local disk storage, such as the key, hash, and pickle functions, are
taken from this.

• dir (str) – Directory into which to save results. The same directory can be used for
several different functions, since a subdirectory will be created for each function based on
its funcname.

clear()
Delete all the results stored in this cache

class pypersist.diskcache.CacheWithKeys(func, dir)
Mutable mapping for saving function outputs to disk

This subclass of Cache can be used in place of Cache whenever storekey is True or unhash is set, to implement
the MutableMapping abstract base class. This allows the cache to be used exactly like a dictionary, including
the ability to iterate through all keys in the cache.

class KeysIter(cache)
Iterator class for the keys of a CacheWithKeys object

next()
Return the next item from the iterator. When exhausted, raise StopIteration

4.3 Caching to a MongoDB database

Persistent memoisation backend that saves results on a MongoDB REST server

The persist decorator takes a cache argument, which details what sort of backend to use for the cache. If this string
begins with “mongodb://”, then a MongoDB cache is used, which saves computed results to a MongoDB database via
a REST API. This internal work is done by the classes defined below.

To start a MongoDB/REST server for use with this cache, navigate to the mongodb_server/ directory and execute the
run.py script.

class pypersist.mongodbcache.Cache(func, url)
Dictionary-like object for saving function outputs to disk

This cache, which can be used by the persist decorator in persist.py, stores computed values in a specified
MongoDB database so that they can be restored later using a key. Like a dictionary, a key-value pair can be
added using cache[key] = val, looked up using cache[key], and removed using del cache[key]. The number of
values stored can be found using len(cache).

A MongoDB cache might not store its keys, and therefore we cannot iterate through its keys as we can with a
dictionary. However, see CacheWithKeys.

12 Chapter 4. Acknowledgements

https://docs.python.org/3/library/stdtypes.html#str

pypersist Documentation, Release 1.1

Parameters

• func (persist_wrapper) – Memoised function whose results this is caching. Options
which are not specific to local disk storage, such as the key, hash, and pickle functions, are
taken from this.

• url (str) – URL of the pypersist MongoDB database that will be used to store and load
results. The same database can be used for several different functions, since the function’s
funcname will be stored with each result.

_get_db(hash=None)
Return all db items for this function, or one with this hash

Queries the MongoDB database for entries with this function, and returns the resulting json data as a
dictionary.

Parameters hash (str, optional) – The hash of the database item we wish to retrieve.

Returns If a hash is specified, a single database item with entries “_id”, “_etag”, “funcname”,
“hash”, “result” and so on. If no hash is specified, a list of all such items in the database in
the “_items” entry, along with metadata in the “_meta” entry. If no appropriate item exists in
the database, None.

Return type dict or None

clear()
Delete all the results stored in this cache

class pypersist.mongodbcache.CacheWithKeys(func, url)
Mutable mapping for saving function outputs to a MongoDB database

This subclass of Cache can be used in place of Cache whenever storekey is True or unhash is defined, to
implement the MutableMapping abstract base class. This allows the cache to be used exactly like a dictionary,
including the ability to iterate through all keys in the cache.

class KeysIter(cache)
Iterator class for the keys of a CacheWithKeys object

next()
Return the next item from the iterator. When exhausted, raise StopIteration

4.4 Internal defaults

Several of the arguments to the persist decorator are functions. All of these have default values set in other
modules in the package. Users interested in how these defaults behave can read the following manual sections for
more information.

4.4.1 Processing arguments – preprocessing

Code to produce a key from a list of arguments to a function.

When a function decorated with @persist is called, its key function is called on the arguments to produce a key that
corresponds to those arguments. If the user does not specify a custom key function, then we fall back to a default
function that produces a tuple from the arguments; this tuple should be in a standard form that ignores functionally
irrelevant features such as the ordering of keyword arguments. The arg_tuple function in this module produces this
normalised tuple.

4.4. Internal defaults 13

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None

pypersist Documentation, Release 1.1

pypersist.preprocessing.arg_tuple(func, *args, **kwargs)
Return a normalised tuple of arguments from args and kwargs

This function checks that func(*args, **kwargs) is a valid function call, then converts all the non-keyword
arguments to keyword arguments. It then discards any supplied arguments that are equal to their default values
(since they are unnecessary) and finally it sorts the arguments into alphabetical order by name. The arguments
are then retuend as a tuple of tuples, where each tuple is a pair containing the name of the argument followed by
the value given.

If func takes a variable number of arguments, any unnamed arguments will be included as a list with a name
beginning with an asterisk.

Parameters

• func (function) – Function such that func(*args, **kwargs) is a valid call.

• args (list) – List of non-keyword arguments to be passed to func.

• kwargs (dict) – Dictionary of keyword arguments to be passed to func.

Examples

Tuple of arguments to built-in function len:

>>> len("hello world")
11
>>> arg_tuple(len, "hello world")
(('obj', 'hello world'),)

Tuple of arguments to user-defined function, with default argument being discarded:

>>> def sum_of_three(x, a, m=2):
... return x + a + m
>>> sum_of_three(10, m=2, a=15)
27
>>> arg_tuple(sum_of_three, 10, m=2, a=15)
(('a', 15), ('x', 10))

4.4.2 Pickling and unpickling objects – pickling

Default methods used by persist for pickling and unpickling objects.

pypersist.pickling.pickle(obj)
Return a string representation of the object obj

This function takes any object, and uses the pickle and base64 modules to create a string which represents it.
This string consists only of alphanumeric characters, hyphens and underscores. The object obj can later be
reconstructed from this string using the unpickle function.

Examples

>>> pickle("Hello world")
'gANYCwAAAEhlbGxvIHdvcmxkcQAu'
>>> unpickle("gANYCwAAAEhlbGxvIHdvcmxkcQAu")
'Hello world'

14 Chapter 4. Acknowledgements

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict

pypersist Documentation, Release 1.1

pypersist.pickling.pickle_to_bytes(obj)
Pickle an object to a bytes object

For most objects, this function is equivalent to pickle.dumps. However, if pickle.dumps fails, then an alternative
pickling method will be attempted using Sage, if Sage is loaded. Otherwise, an error will be raised.

Used inside the pickle function in this file.

pypersist.pickling.unpickle(string)
Restore an object from a string created by the pickle function

If string was created by the pickle function in this file, then this function returns an object identical to the one
that was used to create string.

Examples

>>> pickle("Hello world")
'gANYCwAAAEhlbGxvIHdvcmxkcQAu'
>>> unpickle("gANYCwAAAEhlbGxvIHdvcmxkcQAu")
'Hello world'

pypersist.pickling.unpickle_from_bytes(obj)
Unpickle a bytes object to produce the original object that was pickled

For most objects, this function is equivalent to pickle.loads. However, if pickle.loads fails, then an alternative
unpickling method will be attempted using Sage, if Sage is loaded. Otherwise, an error will be raised.

Used inside the unpickle function in this file.

4.4.3 Hashing objects – hashing

Default method used by persist for hashing keys

pypersist.hashing.hash(key)
Return a string which is a hash of the argument given

It computes the SHA-256 sum of the key and returns it as a base 64 string. The string consists of alphanumeric
characters, hyphens and underscores, and is precisely 43 characters long.

Examples

>>> hash("somestringkey123")
'wXS1bv_UbdX4riiyyA3Djjo7JeiEfyGI7o1-hGMnkz0'
>>> hash(3.141592654)
'nAh_dG9CDZL7bAFWX7E3iUXN2HXZ5eUiYUzdCJXDH-k'
>>> hash(None)
'Tz_DSKgYlBpGTkFf_2udQWwd3DscZHQ4YdMo-8NFvNY'
>>> key = (("arg1", [1,1,2,3,5,8,13]), ("x", "hello"))
>>> hash(key)
'1TBQNjqeAKCcCBmy-Sk_T1Xm01juuHOWiKotF5WYeZ8'
>>> hash("somestringkey123")
'wXS1bv_UbdX4riiyyA3Djjo7JeiEfyGI7o1-hGMnkz0'

4.4. Internal defaults 15

pypersist Documentation, Release 1.1

16 Chapter 4. Acknowledgements

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

17

pypersist Documentation, Release 1.1

18 Chapter 5. Indices and tables

Python Module Index

p
pypersist, 9
pypersist.diskcache, 11
pypersist.hashing, 15
pypersist.mongodbcache, 12
pypersist.pickling, 14
pypersist.preprocessing, 13

19

pypersist Documentation, Release 1.1

20 Python Module Index

Index

Symbols
_get_db() (pypersist.mongodbcache.Cache method),

13

A
arg_tuple() (in module pypersist.preprocessing), 13

C
Cache (class in pypersist.diskcache), 12
Cache (class in pypersist.mongodbcache), 12
CacheWithKeys (class in pypersist.diskcache), 12
CacheWithKeys (class in pypersist.mongodbcache),

13
CacheWithKeys.KeysIter (class in pyper-

sist.diskcache), 12
CacheWithKeys.KeysIter (class in pyper-

sist.mongodbcache), 13
clear() (pypersist.diskcache.Cache method), 12
clear() (pypersist.mongodbcache.Cache method), 13

H
hash() (in module pypersist.hashing), 15

N
next() (pypersist.diskcache.CacheWithKeys.KeysIter

method), 12
next() (pypersist.mongodbcache.CacheWithKeys.KeysIter

method), 13

P
persist() (in module pypersist), 9
pickle() (in module pypersist.pickling), 14
pickle_to_bytes() (in module pypersist.pickling),

14
pypersist (module), 9
pypersist.diskcache (module), 11
pypersist.hashing (module), 15
pypersist.mongodbcache (module), 12
pypersist.pickling (module), 14

pypersist.preprocessing (module), 13

U
unpickle() (in module pypersist.pickling), 15
unpickle_from_bytes() (in module pyper-

sist.pickling), 15

21

	Installation
	Examples
	Citing
	Acknowledgements
	The persist decorator
	Caching to a local disk
	Caching to a MongoDB database
	Internal defaults

	Indices and tables
	Python Module Index
	Index

